Новости

Скачать схему блока питания s 120 12. Схемотехника блоков питания для светодиодных лент и не только. Более дорогие и блоки питания

Светодиоды заменяют таким типы источников света, такие как люминесцентные лампы и лампы накаливания. Практически в каждом доме уже есть светодиодные лампы, они потребляют гораздо меньше двух своих предшественников (до 10 раз меньше чем лампы накаливания и от 2 до 5 раз меньше, чем КЛЛ или энергосберегающие люминесцентные лампы). В ситуациях, когда необходим длинный источник света, или нужно организовать подсветку сложной формы в ход идёт .

Led лента идеальна для целого ряда ситуаций, главное её преимущество перед отдельными светодиодами и светодиодными матрицами являются источники питания. Их легче найти в продаже почти в любом магазине электротоваров, в отличие от драйверов для мощных светодиодов, к тому же подбор блока питания осуществляется только по потребляемой мощности, т.к. подавляющее большинство светодиодных лент имеют напряжение питания в 12 Вольт.

В то время как для мощных светодиодов и модулей при выборе источника питания нужно искать именно источник тока с требуемой мощностью и номинальным током, т.е. учитывать 2 параметра, что усложняет подбор.

В этой статье рассмотрены типовые схемы блоков питания и их узлы, а также советы по их ремонту для начинающих радиолюбителей и электриков.

Типы и требования к источникам питания для светодиодных лент и 12 В led ламп

Основное требование к источнику питания как для светодиодов, так и для светодиодных лент - качественная стабилизация напряжения/тока, вне зависимости от скачков сетевого напряжения, а также низкие выходные пульсации.

По типу исполнения блоки питания для LED продукции различают:

    Герметичные. Они сложнее в ремонте, корпус не всегда поддаётся аккуратной разборке, а внутри и вовсе может быть залит герметиком или компаундом.

    Негерметичные, для применения в помещении. Лучше поддаются ремонту, т.к. плата изымается после откручивания нескольких винтов.

По типу охлаждения:

    Пассивное воздушное. Блок питания охлаждается за счёт естественной конвекции воздуха через перфорацию его корпуса. Недостаток - невозможность достигнуть высоких мощностей сохранив массогабаритные показатели;

    Активное воздушное. Блок питания охлаждается с помощью кулера (небольшого вентилятора, как устанавливают на системных блоках ПК). Такой тип охлаждения позволяет достичь большей мощности при аналогичных размерах с пассивным блоком питания.

Схемы блоков питания для светодиодных лент

Стоит понимать, что нет в электронике такого понятия как «блок питания для светодиодной ленты», в принципе к любому устройству подойдёт любой блок питания с подходящим напряжением и током большим чем потребляемый прибором. Это значит, что информация описанная ниже применима к практически любым блокам питания.

Однако в обиходе проще говорить о блоке питания по его предназначению для конкретного устройства.

Общая структура импульсного блока питания

Для питания светодиодных лент и другой техники последние десятилетия применяются импульсные блоки питания (ИБП). Они отличаются от трансформаторных тем, что работают не на частоте питающего напряжения (50 Гц), а на высоких частотах (десятки и сотни килогерц).

Поэтому для его работы нужен генератор высокой частоты, в дешевых и рассчитанных на малые токи (единицы ампер) блоках питания часто встречается автогенераторная схема, она применяется в:

    электронных трансформаторах;

    электронных балластах для люминесцентных ламп;

    зарядных устройствах для мобильного телефона;

    дешевых ИБП для светодиодных лент (10-20 вт) и других устройствах.

Схему подобного блока питания можно увидеть на рисунке (для увеличения нажмите на картинку):

Его структура следующая:

В состав ОС включена оптопара U1, с её помощью в силовую часть автогенератора поступает сигнал с выхода и поддерживается стабильное выходное напряжение. В выходной части может отсутствовать напряжение из-за обрыва диода VD8, часто это сборка Шоттки, подлежит замене. Также часто вызывает проблемы вздутый электролитический конденсатор C10.

Как вы видите всё работает с гораздо меньшим количеством элементов, надёжность соответствующая…

Более дорогие и блоки питания

Схемы, которые вы увидите ниже часто встречаются в блоках питания для светодиодных лент, DVD-проигрывателей, магнитол и других маломощных устройств (десятки Ватт).

Прежде чем перейти к рассмотрению популярных схем, ознакомьтесь со структурой импульсного блока питания с ШИМ-контроллером.

Верхняя часть схемы отвечает за фильтрацию, выпрямление и сглаживание пульсаций сетевого напряжения 220, по сути аналогична как в предыдущем типе, так и в последующих.

Самое интересное - это блок ШИМ, сердце любого достойного блока питания. ШИМ-контроллер - это устройство управляющие коэффициентом заполнения импульсов выходного сигнала на основании уставки, определенной пользователем или обратной связи по току или напряжению. ШИМ может управлять как мощностью нагрузки с помощью полевого (биполярного, IGBT) ключа, так и полупроводниковым управляемым ключом в составе преобразователя с трансформатором или дросселем.

Изменяя ширину импульсов при заданной частоте - вы изменяете и действующее значение напряжение, сохраняя при этом амплитудное, вы можете проинтегрировать его с помощью C- и LC-цепей для устранения пульсаций. Такой метод называется Широтно-Импульсное Моделирование, то есть моделирование сигнала за счёт ширины импульсов (скважности/коэффициента заполнения) при постоянной их частоте.

На английском языке это звучит, как PWM-controller, или Pulse-Width Modulation controller.

На рисунке изображен биполярный ШИМ. Прямоугольные сигналы - это сигналы управления на транзисторах с контроллера, пунктиром изображена форма напряжения в нагрузке этих ключей - действующее напряжение.

Более качественные блоки питания малой средней мощности часто построены на интегральных ШИМ-котроллерах со встроенным силовым ключом. Преимущества перед автогенераторной схемой:

    Рабочая частота преобразователя не зависит ни от нагрузки, ни от напряжения питания;

    Более качественная стабилизация выходных параметров;

    Возможность более простой и надежной настройки рабочей частоты на этапе проектирования и модернизации блока.

Ниже будут расположены несколько типовых схем блоков питания (для увеличения нажмите на картинку):

Здесь RM6203 - и контроллер и ключ в одном корпусе.

То же самое, но на другой микросхеме.

Обратная связь осуществляется с помощью резистора, иногда оптопары подключенной к входу с названием Sense (датчик) или Feedback (обратная связь). Ремонт таких блоков питания в общем аналогичен. Если все элементы исправны, и напряжение питания поступает на микросхему (ножка Vdd или Vcc), значит дело скорее всего в ней, более точно просмотрев сигналы на выходе (ножка drain, gate).

Практически всегда заменить такой контроллер можно любым аналогом с подобной структурой, для этого нужно сверить datasheet на тот, что установлен на плате и тот, что у вас в наличии и впаять, соблюдая распиновку, как это изображено на следующих фотографиях.

Или вот схематически изображена замена подобных микросхем.

Мощные и дорогие блоки питания

Блоки питания для светодиодных лент, а также некоторые блоки питания для ноутбуков выполняются на ШИМ-контроллере UC3842.

Схема более сложная и надежная. Основным силовым компонентом является транзистор Q2 и трансформатор. При ремонте нужно проверить фильтрующие электролитические конденсаторы, силовой ключ, диоды Шоттки в выходных цепях и выходные LC-фильтры, напряжения питания микросхемы, в остальном методы диагностики аналогичны.

Однако более подробная и точная диагностика возможна лишь с использованием осциллографа, в противном случае - проверьте короткие замыкания платы, пайку элементов и обрывы дороже. Может помочь замена подозрительных узлов на заведомо рабочие.

Более совершенные модели источников питания для светодиодных лент выполнены на практически легендарной микросхеме TL494 (любые буквы с цифрами «494») или её аналоге KA7500. Кстати на этих же контроллерах построено большинство компьютерных блоков питания AT и ATX.

Вот типовая схема блока питания на этом ШИМ-контроллере (нажмите на схему):

Такие блоки питания отличаются высокой надёжностью и стабильностью работы.

Краткий алгоритм проверки:

1. Запитываем микросхему согласно распиновки от внешнего источника питания 12-15 вольт (12 ножка - плюс, а на 7 ножку - минус).

2. На 14 ножки должно появиться напряжение 5 Вольт, которое будет оставаться стабильным при изменении питания, если оно «плавает» - микросхему под замену.

3. На 5 выводе должно быть пилообразное напряжение «увидеть» его можно только с помощью осциллографа. Если его нет или форма искажена - проверяем соответствие номинальным значениям времязадающей RC-цепи, которая подключена к 5 и 6 выводам, если нет - на схеме это R39 и C35, их под замену, если после этого ничего не изменилось - микросхема вышла из строя.

4. На выходах 8 и 11 должны быть прямоугольные импульсы, но их может не быть из-за конкретной схемы реализации обратной связи (выводы 1-2 и 15-16). Если выключить и подключить 220 В, на какое-то время они там появятся и блок снова уйдёт в защиту - это признак исправной микросхемы.

5. Проверить ШИМ можно закоротив 4 и 7 ножку, ширина импульсов увеличится, а закоротив 4 на 14 ножки - импульсы исчезнут. Если у вас получились другие результаты - проблема в МС.

Это наиболее краткая проверка данного ШИМ-контроллера, о ремонте блоков питания на их основе есть целая книга «Импульсные блоки питания для IBM PC».

Хоть и посвящена она компьютерным блоками питания, но там много полезной информации для любого радиолюбителя.

Вывод

Схемотехника блоков питания для светодиодных лент аналогична любым блокам питания с подобными характеристиками, довольно хорошо поддаётся ремонту, модернизации и перестройки на необходимые напряжения, разумеется, в разумных пределах.

В прошлом блока питания я упомянул о том, что заказал на обзор два блока, сегодня я расскажу про второго подопытного.
По своему он интересен и качественно изготовлен, но не лишен недостатков.
Вся более подробная информация как всегда под катом.

У меня уже был блока питания на такую же мощность и такое же напряжение, но в данном случае эти блоки питания кардинально отличаются, это и подтолкнуло меня взять его для теста.
Обзор будет выполнен в том же формате что и всегда, но комментарии и выводы будут совсем другими.

Начну я сегодня необычно, с упаковки:)))
Блок питания как и в прошлый раз имел собственный картонный «домик». Но в этот раз на упаковке имелось маркировка - Led power supply, хотя к питанию именно светодиодов он отношения не имеет так как работает как источник напряжения, а не тока, но в данном случае большого значения это не имеет.
Сбоку присутствует и маркировка мощности, причем я сразу заметил, что сначала было выделено - 150 Ватт, потом перечеркнуто и проставлено - 180 Ватт, но мы к этому еще вернемся.

Первая отличительная черта данного блока питания, это его формфактор. Блок питания выполнен на основе П-образного алюминиевого шасси, выполняющего роль радиатора, обычно блоки питания выполняют в виде Г-образного шасси с перфорированным кожухом.
Данная конструкция должна улучшить охлаждение силовых элементов и уменьшить размеры блока, но тест нагрева будет позже.

Размеры блока питания весьма скромные, длина 200мм, ширина 59мм, высота 36мм.

С торцов блока находятся разъемы для подключения питания 220 Вольт + заземления и выхода 12 Вольт.
Выходные клеммы сделаны двойными, по два контакта на каждую полярность.
Вызвано это довольно большим выходным током, до 15 Ампер, в таком варианте удобнее подключать нагрузку.

Каждый клеммник имеет защитную крышку. В прошлом обзоре 180 Ватт блока питания меня спросили, открывается ли крышка полностью, так как у человека были проблемы с этим.
Крышка хоть и имеет довольно тугие защелки, но открывается под 90 градусов.

Производитель заявляет следующие характеристики:
Входное напряжение - 110/220 Вольт ± 15% (что странно так как БП не имеет переключателя напряжения)
Выходное напряжение - 12 Вольт
Выходной ток - 15 Ампер.

Так как снаружи больше нет ничего интересного, то я полез внутрь.
Разбирается блок предельно просто, по бокам находятся четыре винта, открутив которые, без проблем можно снять верхнюю крышку.
Первое что бросилось в глаза, это то, что блок питания собран по однотактной схемотехнике.
На мой личный взгляд БП мощностью в 180 Ватт собранный по такой схеме это уже на границе добра и зла.
Дело в том, что на маленьких мощностях такая схема работает отлично, но на больших уже «правят балом» двухтактные, мостовые или полумостовые (такая схемотехника применяется в большинстве компьютерных БП).
Данный БП находится примерно на границе разделения «сфер влияния».

Первое включение блок питания пережил вполне нормально, что уже само по себе приятно:)
Исходно был настроен на 12.21 Вольта (только потом я понял почему).
Диапазон регулировки не очень большой, минимальное 11.75, максимальное 12.63.
После проверки диапазона регулировки я выставил БП на заявленные 12 Вольт.

Несколько фотографий основных узлов блока питания.
1. Сетевой фильтр, в этот раз есть терморезистор, защищающий от броска тока при включении БП, есть место под защитный варистор, но его «забыли» впаять.
2. Входной конденсатор имеет емкость 150мкФ, на вид больше похож на фирменный, причем рассчитан на максимальную температуру в 105 градусов. Если бы не заниженная емкость, то я бы сказал что отлично, а так только - хорошо.
3. Высоковольтный транзистор прижат при помощи Г-образной пластинки. присутствует паста, причем по виду похожа на силиконовую.
4. На выходе установлено две диодные сборки, прижаты так же металлической пластинкой через пасту, но к другой стенке корпуса.

Разбираем дальше. Плата привинчена на один крепежный винт, сама по себе вставлена в пазы корпуса, вставлять и вынимать только вместе с диэлектрической вставкой.
Можно заметить что плата почти пустая, на ней сверху установлены только крупные элементы.
Так обычно изготавливают фирменные блоки питания (по крайней мере мне это вспомнилось).

Печатная плата.

Пара более детальных фото печатной платы.
Вторичная сторона, применены точные резисторы, это хорошо, также интересно сделана разводка цепи обратной связи, видно что над трассировкой все таки думали. Кстати БП изготовлен тем же производителем, что и прошлый на 24 Вольта.

Первичная сторона.

В качестве ШИМ контроллера применена неизвестная мне .
Зато я обратил внимание на то, что производитель поставил параллельно электролиту, в цепи питания этой микросхемы, керамический конденсатор. Такое попадается довольно редко, а зря.
Токоизмерительный шунт выполнен в виде шести параллельно включенных резисторов.

Принципиальная схема немного отличается от схемы предыдущего блока питания.
На схеме некоторые позиции имеют обозначение вида - 22 (11) и порядковый номер элемента состоящий из нескольких цифр. Это означает, что установлено несколько параллельных элементов, в скобках дан суммарный номинал.

Отдельные фотографии основных компонентов блока питания.
1. Элементы входного фильтра питания, помехоподавляющий конденсатор и дроссель.
2. Терморезистор для ограничения пускового тока и диодный мост , в этот раз диодный мост 4 Ампера 600 Вольт.
3. Дополнительные помехоподавляющие конденсаторы, правильного Y типа.
4. Высоковольтный транзистор . Транзистор в изолированном корпусе, рассчитан на ток до 12 Ампер и напряжение до 650 Вольт. На мой взгляд можно было поставить и помощнее, но тест показал что как раз с ним все в порядке.

1. Межобмоточный конденсатор также правильного Y типа, что в последнее время редкость.
Рядом с ним есть пустое место под установку такого же конденсатора, соединяющего минус выходной цепи с корпусом блока питания, но его также «забыли». Не скажу что он очень важен, но был бы не лишним.
2. Выходные диодные сборки , вопросов нет, параметры соответствуют выходному току и напряжению блока питания.
Несколько слов о трансформаторе. Изготовлен правильно, видно что первичная обмотка выполнена из двух проводов и разделена на две части (такое желательно для улучшения связи между обмотками). выходная обмотка выполнена в четыре провода, хотя при таких токах уже лучше смотрится обмотка из литцендрата.

Выходные конденсаторы набраны из пяти штук. До дросселя установлены три штуки 1000мкФ на 25 Вольт, после стоит две штуки 1000мкФ на 16 Вольт. я считаю что стоило ставить все конденсаторы на 25 Вольт как минимум. А в идеале до дросселя 35 Вольт, после - 25 Вольт, но такое нечасто встречается даже в фирменных БП.
Расстроил выходной дроссель, место позволяет установить дроссель с большей индуктивностью и рассчитанный на больший ток. Я бы рекомендовал заменить его на более подходящий.
Небольшое измерение емкости конденсаторов показало соответствие указанной и реальной емкости.

Ну собственно с обзором конструкции и элементной базы закончили, теперь можно спокойно перейти к тестированию.
Для этого был собран такой же «стенд» как и в прошлом обзоре. В него вошли:
Подопытный блок питания.
Электронная нагрузка
Осциллограф
Мультиметр
Бесконтактный термометр

Методика тестирования уже почти стандартная.
Включение, нагрузка, прогрев 20 минут, повышение тока нагрузки, прогрев 20 минут и т.д. пока не упремся в максимальный ток, либо пока БП не издаст последний писк.
Делитель щупа осциллографа стоял в положении 1:1, цена деления осциллографа была выставлена на 0.1 Вольта.
1. Сначала проверка на холостом ходу, выходное напряжение 11.98 Вольта.
2. Повышение тока нагрузки до 3 Ампер, напряжение резко упало до 11.65 Вольта.

После того как я увидел, что выходное напряжение резко упало при относительно небольшой нагрузке, я сразу вспомнил, что изначально оно было выставлено на 12.21 Вольта.
Видимо нагрузочные резисторы, стоящие по выходу блока, не совсем справляются со своей функцией и выходное напряжение поднимается на холостом ходу.
Пришлось скорректировать выходное напряжение до значения 11.99 Вольта при токе в 3 Ампера.
Дальше регулятор я уже не трогал.

1. Ток нагрузки 6 Ампер, напряжение 12 Вольт, проскакивают пульсации с напряжением около 0.4 Вольта
2. Ток нагрузки 9 Ампер, напряжение 11.92 Вольта, размах пульсаций почти не изменился, но стали они чаще.

1. Ток нагрузки 12 Ампер, напряжение 11.84 Вольта, напряжение пульсаций около 0.5 Вольта
2. Ток нагрузки около 14 ампер (больше не дает нагрузка), напряжение упало до 11.8 Вольта, а вот пульсации возросли уже довольно существенно и составили 0.65 Вольта.

Как я выше писал, данные о температуре компонентов снимались каждые 20 минут.
Первое значение - холостой ход после примерно 20-30 секунд прогона под током 10 Ампер (так получилось), следующие снимались перед очередным повышением тока.
Последнее значение - дополнительный 20 минутный прогрев для оценки динамики роста температуры. Полное время теста составило 2 часа.
Измерялись температуры:
Высоковольтного транзистора, трансформатора, выходных диодов, выходных конденсаторов.
В качестве температуры выходного диода принималось значение с большей температурой (одна сборка имела температуру на несколько градусов выше).


При почти максимальном токе нагрузки блок питания заметно перегревается, потому при эксплуатации не стоит рассчитывать на ток более 12 Ампер.

В конце эксперимента я снял картину нагрева всего блока питания в целом, к сожалению у меня еще нет тепловизора, потому только так.

Резюме.
Плюсы
Хорошая и довольно продуманная конструкция.
Наличие фильтра питания с конденсаторами правильных типов.
Большая часть компонентов подобрана правильно и соответственно мощности блока питания.

Минусы
Большой уровень пульсаций, возможно улучшить заменой выходного дросселя.
Большой нагрев при максимальном токе, к сожалению простыми доработками не исправляется.

Мое мнение. В самом начале я писал, что еще вернусь к разговору о мощности блока питания, которая изначально была указана на упаковке. Я считаю, что первоначально указанные 150 Ватт это и есть та мощность, на которой данный блок питания может работать вполне безопасно.
Порадовала хорошая конструкция, наличие полноценного фильтра питания, правильные конденсаторы (влияет на безопасность). Но расстроила высокая температура, и если для полупроводников она привычна, то для трансформатора и выходных конденсаторов - опасна.
Емкость конденсаторов на мой взгляд несколько занижена и также больше подходит для мощности в 150 Ватт, а не 180.
Итого получается вполне нормальный, качественно изготовленный, блок питания мощностью 144 Ватта, ну или по другому 12 Вольт 12 Ампер.

Надеюсь что обзор был полезен и позволит сделать правильный выбор.

Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

Планирую купить +42 Добавить в избранное Обзор понравился +60 +114

Как отремонтировать и доработать импульсный блок питания китайского производства на 12 вольт

Хочу начать с того, что ко мне в руки попали несколько сгоревших и кем-то уже «поремонтированных» блоков питания 220/12 В. Все блоки были однотипными – HF55W-S-12, поэтому, забив в поисковике название, я надеялся найти схему. Но кроме фотографий внешнего вида, параметров и цен на них, ничего не нашел. Поэтому пришлось схему рисовать самому с платы. Схема рисовалась не для изучения принципа работы БП, а исключительно в ремонтных целях. Поэтому сетевой выпрямитель не нарисован, так-же я не распиливал импульсный трансформатор и не знаю в каком месте сделан отвод (начало-конец) на 2 обмотке трансформатора. Так же не надо считать опечаткой С14 -62 Ома, – на плате маркировка и разметка под электролитический конденсатор (+ показан на схеме), но везде на его месте стояли резисторы номиналом 62 Ома.

При ремонте подобных устройств их нужно подключать через лампочку (лампа накаливания 100-200 Вт, последовательно с нагрузкой), что-бы в случае КЗ в нагрузке, не вышел из строя выходной транзистор и не погорели дорожки на плате. Да и вашим домочадцам спокойнее, если вдруг внезапно не погаснет свет в квартире.
Основной неисправностью является пробой Q1 (FJP5027 – 3 А,800 В, 15 мГц) и как следствие – обрыв резисторов R9, R8 и выход из строя Q2 (2SC2655 50 В\2 А 100 мГц). На схеме они выделены цветом. Q1 можно заменить любым подходящим по току и напряжению транзистором. Я ставил BUT11, BU508. Если мощность нагрузки не будет превышать 20 Вт можно ставить даже J1003, которые можно найти на плате от перегоревшей энергосберегающей лампы. В одном блоке совсем отсутствовал VD-01 (диод шоттки STPR1020CT -140 В\2х10 А) я поставил вместо него MBR2545CT (45 В\30 А), что характерно, он вообще не греется на нагрузке 1,8 А (использовалась лампа автомобильная 21 Вт\12 В). А родной диод за минуту работы (без радиатора) разогревается так, что рукой невозможно дотронуться. Проверил потребляемый устройством (с лампой 21 Вт) ток с родным диодом и с MBR2545CT – ток (потребляемый из сети, у меня напряжение 230 В) понизился с 0,115 А до 0,11 А. Мощность снизилась на 1,15 Вт, я считаю, что именно столько рассеивалось на родном диоде.
Заменить Q2 было нечем, под рукой нашелся транзистор С945. Пришлось “умощнить” его схемой с транзистором КТ837 (рис 2) . Ток остался под контролем и при сравнении тока с родной схемой на 2SC2655, получилось ещё снижение потребляемой мощности c той же нагрузкой на 1 Вт.

В результате, при нагрузке 21 Вт и при работе в течении 5 мин, выходной транзистор и выпрямительный диод (без радиатора) нагреваются градусов до 40 (чуть тёплые). В первоначальном варианте, через минуту работы без радиатора, до них нельзя было дотронуться. Следующим шагом к повышению надёжности блоков сделанных по этой схеме – это замена электролитического конденсатора С12 (склонного к высыханию электролита со временем) на обычный неполярный -неэлектролитический. Таким же номиналом 0,47 мкФ и напряжением не ниже 50 В.
С такими характеристиками БП, теперь можно смело подключать светодиодные ленты, не боясь что КПД блока питания ухудшит эффект экономичности светодиодного освещения.

Вам когда-нибудь хотелось включить телевизор, музыкальный центр или другую технику, когда Вы в машине или отдыхаете на природе? Инвертор должен решить эту проблему. Он преобразовывает постоянное напряжение 12 В в переменное 120 В. В зависимости от мощности примененных транзисторов Q1 и Q2, а также от того, насколько «большим» будет трансформатор Т1, инвертор может иметь выходную мощность от 1 Вт до 1000 Вт.

Принципиальная схема

Перечень элементов

Элемент

Кол-во

Описание

Танталовые конденсаторы 68 мкФ, 25 В

Резисторы 10 Ом, 5 Вт

Резисторы 180 Ом, 1 Вт

Кремниевые диоды HEP 154

n-p-n транзисторы 2N3055 (см. "Замечания")

Трансформатор 24 В с отводом от середины вторичной обмотки (см. "Замечания")

Провода, корпус, розетка (для выходного напряжения)

Замечания

  1. Транзисторы Q1 и Q2, а также трансформатор Т1, определяют выходную мощность инвертора. При Q1, Q2 = 2N3055 и T1=15A инвертор имеет выходную мощность 300 Ватт. Для увеличения мощности транзисторы и трансформатор необходимо заменить на более мощные.
  2. Самый простой и дешевый способ получить большой трансформатор - перемотать трансформатор от микроволновой печи. Эти трансформаторы имеют выходную мощность до 1000 Ватт и хорошее качество. Сходите в ремонтную мастерскую или посмотрите на свалке, и выберите самую большую микроволновую печь. Чем больше печь, тем больше трансформатор. Извлеките трансформатор. Делайте это осторожно, не коснитесь вывода высоковольтного конденсатора, который может быть еще заряжен. Вы можете проверить трансформатор, но обычно они исправны. Осторожно, чтобы не повредить первичную обмотку, удалите вторичную (2000 В) обмотку. Первичную оставьте на месте. Теперь намотайте поверх первичной обмотки 24 витка эмалированного провода с отводом от середины обмотки. Диаметр провода будет зависеть от требующегося вам тока. Заизолируйте обмотку изолентой. Трансформатор готов. Транзисторы Q1 и Q2 выбирайте помощнее. Указанные в перечне компонентов 2N3055 рассчитаны на ток всего лишь 15 А.
  3. Помните, что при питании мощной нагрузки, схема потребляет огромный ток. Не дайте вашему аккумулятору умереть.
  4. Поскольку выходное напряжение преобразователя 120 В, он должен быть помещен в корпус.
  5. В качестве С1 и С2 необходимо использовать только танталовые конденсаторы. Обычные электролитические конденсаторы от постоянной перезарядки перегреваются и взрываются. Емкость конденсаторов может быть только 68 мкФ - без изменений.
  6. При запуске этой схемы могут возникнуть сложности. При ошибке в монтаже схемы, конструкции трансформатора или при неправильной замене компонентов, преобразователь может не заработать.
  7. Если вы хотите получить на выходе преобразователя напряжение 220/240 В, вам нужно использовать трансформатор с первичной обмоткой на 220/240 В (по схеме она вторичная). Остальная часть схемы остается неизменной. Ток, который инвертор будет забирать от источника 12 В при выходном напряжении 240 В будет вдвое больше, чем при напряжении 120 В.