Измерения

Минимальное и максимальное качество звука. Лучшие форматы музыки по качеству звучания. Определение качества звука

Кодирование звуковой информации.

Типы задач:

1. Размер цифрового аудиафайла (моно и стерео).

При решении задач учащиеся опираются на следующие понятия:

Временная дискретизация – процесс, при котором, во время кодирования непрерывного звукового сигнала, звуковая волна разбивается на отдельные маленькие временные участки, причем для каждого такого участка устанавливается определенная величина амплитуды. Чем больше амплитуда сигнала, тем громче звук.

Глубина звука (глубина кодирования) - количество бит на кодировку звука.

Уровни громкости (уровни сигнала) - звук может иметь различные уровни громкости. Количество различных уровней громкости рассчитываем по формуле N = 2 I где I – глубина звука.

Частота дискретизации – количество измерений уровня входного сигнала в единицу времени (за 1 сек). Чем больше частота дискретизации, тем точнее процедура двоичного кодирования. Частота измеряется в герцах (Гц). 1 измерение за 1 секунду -1 ГЦ.

1000 измерений за 1 секунду 1 кГц. Обозначим частоту дискретизации буквой D . Для кодировки выбирают одну из трех частот: 44,1 КГц, 22,05 КГц, 11,025 КГц.

Считается, что диапазон частот, которые слышит человек, составляет от 20 Гц до 20 кГц .

Качество двоичного кодирования – величина, которая определяется глубиной кодирования и частотой дискретизации.

Аудиоадаптер (звуковая плата) – устройство, преобразующее электрические колебания звуковой частоты в числовой двоичный код при вводе звука и обратно (из числового кода в электрические колебания) при воспроизведении звука.

Характеристики аудиоадаптера: частота дискретизации и разрядность регистра.).

Разрядность регистра - число бит в регистре аудиоадаптера. Чем больше разрядность, тем меньше погрешность каждого отдельного преобразования величины электрического тока в число и обратно. Если разрядность равна I , то при измерении входного сигнала может быть получено 2 I = N различных значений.

Размер цифрового моноаудиофайла (A ) измеряется по формуле:

A = D * T * I /8 , где D частота дискретизации (Гц), T – время звучания или записи звука, I разрядность регистра (разрешение). По этой формуле размер измеряется в байтах.

Размер цифрового стереоаудиофайла (A ) измеряется по формуле:

A =2* D * T * I /8 , сигнал записан для двух колонок, так как раздельно кодируются левый и правый каналы звучания.

Учащимся полезно выдать таблицу 1 , показывающую, сколько Мб будет занимать закодированная одна минута звуковой информации при разной частоте дискретизации:

Тип сигнала

Частота дискретизация, КГц

16 бит, стерео

16 бит, моно

8 бит, моно

1. Размер цифрового файла

Уровень «3»

1. Определить размер (в байтах) цифрового аудиофайла, время звучания которого составляет 10 секунд при частоте дискретизации 22,05 кГц и разрешении 8 бит. Файл сжатию не подвержен. (, стр. 156, пример 1)

Решение:

Формула для расчета размера (в байтах) цифрового аудио-файла: A = D * T * I /8.

Для перевода в байты полученную величину надо разделить на 8 бит.

22,05 кГц =22,05 * 1000 Гц =22050 Гц

A = D * T * I /8 = 22050 х 10 х 8 / 8 = 220500 байт.

Ответ: размер файла 220500 байт.

2. Определить объем памяти для хранения цифрового аудиофайла, время звучания которого составляет две минуты при частоте дискретизации 44,1 кГц и разрешении 16 бит. (, стр. 157, №88)

Решение :

A = D * T * I /8. – объем памяти для хранения цифрового аудиофайла.

44100 (Гц) х 120 (с) х 16 (бит) /8 (бит) = байт= 10335,9375 Кбайт= 10,094 Мбайт.

Ответ: ≈ 10 Мб

Уровень «4»

3. В распоряжении пользователя имеется память объемом 2,6 Мб. Необходимо записать цифровой аудиофайл с длительностью звучания 1 минута. Какой должна быть частота дискретизации и разрядность? (, стр. 157, №89)

Решение:

Формула для расчета частоты дискретизации и разрядности: D* I =А/Т

(объем памяти в байтах) : (время звучания в секундах):

2, 6 Мбайт= 26 байт

D* I =А/Т= 26 байт: 60 = 45438,3 байт

D=45438,3 байт: I

Разрядность адаптера может быть 8 или 16 бит. (1 байт или 2 байта). Поэтому частота дискретизации может быть либо 45438,3 Гц = 45,4 кГц ≈ 44,1 кГц –стандартная характерная частота дискретизации, либо 22719,15 Гц = 22,7 кГц ≈ 22,05 кГц - стандартная характерная частота дискретизации

Ответ:

Частота дискретизации

Разрядность аудиоадаптера

1 вариант

22,05 КГц

16 бит

2 вариант

44,1 КГц

8 бит

4. Объем свободной памяти на диске - 5,25 Мб, разрядность звуковой платы - 16. Какова длительность звучания цифрового аудиофайла, записанного с частотой дискретизации 22,05 кГц? (, стр. 157, №90)

Решение:

Формула для расчета длительности звучания: T=A/D/I

(объем памяти в байтах) : (частота дискретизации в Гц) : (разрядность звуковой платы в байтах):

5,25 Мбайт = 5505024 байт

5505024 байт: 22050 Гц: 2 байта = 124,8 сек
Ответ: 124,8 секунды

5. Одна минута записи цифрового аудиофайла занимает на диске 1,3 Мб, разрядность звуковой платы - 8. С какой частотой дискретизации записан звук? (, стр. 157, №91)

Решение:

Формула для расчета частоты дискретизации: D =А/Т/I

(объем памяти в байтах) : (время записи в секундах) : (разрядность звуковой платы в байтах)

1,3 Мбайт = 18 байт

18 байт: 60: 1 = 22719,1 Гц

Ответ: 22,05 кГц

6. Две минуты записи цифрового аудиофайла занимают на диске 5,1 Мб. Частота дискретизации - 22050 Гц. Какова разрядность аудиоадаптера? (, стр. 157, №94)

Решение:

Формула для расчета разрядности: (объем памяти в байтах) : (время звучания в секундах): (частота дискретизации):

5, 1 Мбайт= 56 байт

56 байт: 120 сек: 22050 Гц= 2,02 байт =16 бит

Ответ: 16 бит

7. Объем свободной памяти на диске - 0,01 Гб, разрядность звуковой платы - 16. Какова длительность звучания цифрового аудиофайла, записанного с частотой дискретизации 44100 Гц? (, стр. 157, №95)

Решение:

Формула для расчета длительности звучания T=A/D/I

(объем памяти в байтах) : (частота дискретизации в Гц) : (разрядность звуковой платы в байтах)

0,01 Гб = ,24 байт

24 байт: 44100: 2 = 121,74 сек =2,03 мин
Ответ: 20,3 минуты

8. Оцените информационный объем моноаудиофайла длительностью звучания 1 мин. если "глубина" кодирования и частота дискретизации звукового сигнала равны соответственно:
а) 16 бит и 8 кГц;
б) 16 бит и 24 кГц.

(, стр. 76, №2.82)

Решение:

а).
16 бит х 8 000 = 128000 бит = 16000 байт = 15,625 Кбайт/с
15,625 Кбайт/с х 60 с = 937,5 Кбайт

б).
1) Информационный объем звукового файла длительностью в 1 секунду равен:
16 бит х= 384000 бит = 48000 байт = 46,875 Кбайт/с
2) Информационный объем звукового файла длительностью 1 минута равен:
46,875 Кбайт/с х 60 с =2812,5 Кбайт = 2,8 Мбайт

Ответ: а) 937,5 Кбайт; б) 2,8 Мбайт

Уровень «5»

Используется таблица 1

9. Какой объем памяти требуется для хранения цифрового аудиофайла с записью звука высокого качества при условии, что время звучания составляет 3 минуты? (, стр. 157, №92)

Решение:

Высокое качество звучания достигается при частоте дискретизации 44,1КГц и разрядности аудиоадаптера, равной 16.
Формула для расчета объема памяти: (время записи в секундах) x (разрядность звуковой платы в байтах) x (частота дискретизации):
180 с х 2 х 44100 Гц = байт = 15,1 Мб
Ответ: 15,1 Мб

10. Цифровой аудиофайл содержит запись звука низкого качества (звук мрачный и приглушенный). Какова длительность звучания файла, если его объем составляет 650 Кб? (, стр. 157, №93)

Решение:

Для мрачного и приглушенного звука характерны следующие параметры: частота дискретизации - 11, 025 КГц, разрядности аудиоадаптера - 8 бит (см. таблицу 1). Тогда T=A/D/I. Переведем объем в байты: 650 Кб = 665600 байт

Т=665600 байт/11025 Гц/1 байт ≈60.4 с

Ответ: длительность звучания равна 60,5 с

Решение:

Информационный объем звукового файла длительностью в 1 секунду равен:
16 бит хх 2 = 1 бит = 187,5 Кбайт (умножили на 2, так как стерео).

Информационный объем звукового файла длительностью 1 минута равен:
187,5 Кбайт/с х 60 с ≈ 11 Мбайт

Ответ: 11 Мб

Ответ: а) 940 Кбайт; б) 2,8 Мбайт.

12. Рассчитайте время звучания моноаудиофайла, если при 16-битном кодировании и частоте дискретизации 32 кГц его объем равен:
а) 700 Кбайт;
б) 6300 Кбайт

(, стр. 76, №2.84)

Решение:

а).
1) Информационный объем звукового файла длительностью в 1 секунду равен:

700 Кбайт: 62,5 Кбайт/с = 11,2 с

б).
1) Информационный объем звукового файла длительностью в 1 секунду равен:
16 бит х= 512000 бит = 64000 байт = 62,5 Кбайт/с
2) Время звучания моноаудиофайла объемом 700 Кбайт равно:
6300 Кбайт: 62,5 Кбайт/с = 100,8 с = 1,68 мин

Ответ: а) 10 сек; б) 1,5 мин.

13. Вычислить, сколько байт информации занимает на компакт-диске одна секунда стереозаписи (частота 44032 Гц, 16 бит на значение). Сколько занимает одна минута? Какова максимальная емкость диска (считая максимальную длительность равной 80 минутам)? (, стр. 34, упражнение №34)

Решение:

Формула для расчета объема памяти A = D * T * I :
(время записи в секундах) * (разрядность звуковой платы в байтах) * (частота дискретизации). 16 бит -2 байта.
1) 1с х 2 х 44032 Гц = 88064 байт (1 секунда стереозаписи на компакт-диске)
2) 60с х 2 х 44032 Гц = 5283840 байт (1 минута стереозаписи на компакт-диске)
3) 4800с х 2 х 44032 Гц = байт=412800 Кбайт=403,125 Мбайт (80 минут)

Ответ: 88064 байт (1 секунда), 5283840 байт (1 минута), 403,125 Мбайт (80 минут)

2. Определение качества звука.

Для определения качества звука надо найти частоту дискретизации и воспользоваться таблицей №1

уровней интенсивности сигнала - качество звучания радиотрансляции, использованием 65уровней интенсивности сигнала - качество звучания аудио-CD. Самая качественная частота соответствует музыке, записанной на компакт-диске. Величина аналогового сигнала измеряется в этом случае 44 100 раз в секунду.

Уровень «5»

13. Определите качество звука (качество радиотрансляции, среднее качество, качество аудио-CD) если известно, что объем моноаудиофайла длительностью звучания в 10 сек. равен:
а) 940 Кбайт;
б) 157 Кбайт.

(, стр. 76, №2.83)

Решение:

а).
1) 940 Кбайт= 962560 байт = 7700480 бит
2) 7700480 бит: 10 сек = 770048 бит/с
3) 770048 бит/с: 16 бит = 48128 Гц –частота дискретизации – близка к самой высокой 44,1 КГц
Ответ: качество аудио-CD

б).
1) 157 Кбайт= 160768 байт = 1286144 бит
2) 1286144 бит: 10 сек = 4 бит/с
3) 4 бит/с: 16 бит = 8038,4 Гц
Ответ: качество радиотрансляции

Ответ: а) качество CD; б) качество радиотрансляции.

14. Определите длительность звукового файла, который уместится на гибкой дискете 3,5”. Учтите, что для хранения данных на такой дискете выделяется 2847 секторов объемом 512 байт.
а) при низком качестве звука: моно, 8 бит, 8 кГц;
б) при высоком качестве звука: стерео, 16 бит, 48 кГц.

(, стр. 77, №2.85)

Решение:

а).

8 бит х 8 000 =бит = 8000 байт = 7,8 Кбайт/с
3) Время звучания моноаудиофайла объемом 1423,5 Кбайт равно:
1423,5 Кбайт: 7,8 Кбайт/с = 182,5 с ≈ 3 мин

б).
1) Информационный объем дискеты равен:
2847 секторов х 512 байт = 1457664 байт = 1423,5 Кбайт
2) Информационный объем звукового файла длительностью в 1 секунду равен:
16 бит хх 2= 1 бит = байт = 187,5 Кбайт/с
3) Время звучания стереоаудиофайла объемом 1423,5 Кбайт равно:
1423,5 Кбайт: 187,5 Кбайт/с = 7,6 с

Ответ: а) 3 минуты; б) 7,6 секунды.

3. Двоичное кодирование звука.

При решении задач пользуется следующим теоретическим материалом:

Для того, чтобы кодировать звук, аналоговый сигнал, изображенный на рисунке,

плоскость разбивается на вертикальные и горизонтальные линии. Вертикальное разбиение –это дискретизация аналогового сигнала (частота измерения сигнала), горизонтальное разбиение - квантование по уровню. Т. е. чем мельче сетка – тем качественнее приближен аналоговый звук с помощью цифр. Восьмибитное квантование применяется для оцифровки обычной речи (телефонного разговора) и радиопередач на коротких волнах. Шестнадцатибитное – для оцифровки музыки и УКВ (ультро-коротко-волновые) радиопередач.

Уровень «3»

15. Аналоговый звуковой сигнал был дискретизирован сначала с использованием 256 уровней интенсивности сигнала (качество звучания радиотрансляции), а затем с использованием 65536 уровней интенсивности сигнала (качество звучания аудио-CD). Во сколько раз различаются информационные объемы оцифрованного звука? (, стр. 77, №2.86)

Решение:

Длина кода аналогового сигнала с использованием 256 уровней интенсивности сигнала равна 8 битам, с использованием 65536 уровней интенсивности сигнала равна 16 битам. Так как длина кода одного сигнала увеличилась вдвое, то информационные объемы оцифрованного звука различаются в 2 раза.

Ответ: в 2 раза.

Уровень «

16. Согласно теореме Найквиста-Котельникова, для того чтобы аналоговый сигнал можно было точно восстановить по его дискретному представлению (по его отсчетам), частота дискретизации должна быть как минимум вдвое больше максимальной звуковой частоты этого сигнала.

· Какова должна быть частота дискретизации звука, воспринимаемого человеком?

· Что должно быть больше: частота дискретизации речи или частота дискретизации звучания симфонического оркестра?

Цель: познакомить учащихся с характеристиками аппаратных и программных средств работы со звуком. Виды деятельности: привлечение знаний из курса физики (или работа со справочниками). (, стр. ??, задача 2)

Решение:

Считается, что диапазон частот, которые слышит человек, составляет от 20 Гц до 20 кГц. Таким образом, по теореме Найквиста-Котельникова, для того чтобы аналоговый сигнал можно было точно восстановить по его дискретному представлению (по его отсчетам), частота дискретизации должна быть как минимум вдвое больше максимальной звуковой частоты этого сигнала. Максимальная звуковая частота которую слышит человек -20 КГц, значит, аппарату ра и программные средства должны обеспечивать частоту дискретизации не менее 40 кГц, а точнее 44,1 КГц. Компьютерная обработка звучания симфонического оркестра предполагает более высокую частоту дискретизации, чем обработка речи, поскольку диапазон частот в случае симфонического оркестра значительно больше.

Ответ: не меньше 40 кГц, частота дискретизации симфонического оркестра больше.

Уровень»5»

17. На рисунке изображено зафиксированное самописцем звучание 1 секунды речи. Закодируйте его в двоичном цифровом коде с частотой 10 Гц и длиной кода 3 бита. (, стр. ??, задача 1)

Решение:

Кодирование с частотой 10 Гц означает, что мы должны измерить высоту звука 10 раз за секунду. Выберем равноотстоящие моменты времени:

Длина кода в 3 бита означает 23 = 8 уровней квантования. То есть в качестве числового кода высоты звука в каждый выбранный момент времени мы можем задать одну из следующих комбинаций: 000, 001, 010, 011, 100, 101, 110, 111. Их всего 8, следовательно, высоту звука можно измерять на 8 «уровнях»:

«Округлять» значения высоты звука будем до ближайшего нижнего уровня:

Используя данный способ кодирования, мы получим следующий результат (пробелы поставлены для удобства восприятия):

Примечание. Целесообразно обратить внимание учащихся на то, насколько неточно код передает изменение амплитуды. То есть частота дискретизации 10 Гц и уровень квантованиябита) слишком малы. Обычно для звука (голоса) выбирают частоту дискретизации 8 кГц, т. е. 8000 раз в секунду, и уровень квантования 28 (код длиной 8 бит).

Ответ:

18. Объясните, почему уровень квантования относится, наряду с частотой дискретизации, к основным характеристикам представления звука в компьютере. Цели: закрепить понимание учащимися понятий «точность представления данных», «погрешность измерения», «погрешность представления»; повторить с учащимися двоичное кодирование и длину кода. Вид деятельности: работа с определениями понятий. (, стр. ??, задача 3)

Решение:

В геометрии, физике, технике есть понятие «точность измерения», тесно связанное с понятием «погрешность измерения». Но есть еще и понятие «точность представления». Например, про рост человека можно сказать, что он: а) около. 2 м, б) чуть больше 1,7 м, в) равен 1 м 72 см, г) равен 1 м 71 см 8 мм. То есть для обозначения измеренного роста можно использовать 1, 2, 3 или 4 цифры.
Так же и для двоичного кодирования. Если для записи высоты звука в конкретный момент времени использовать только 2 бита, то, даже если измерения были точны, передать можно только 4 уровня: низкий (00), ниже среднего (01), выше среднего (10), высокий (11). Если использовать 1 байт, то можно передать 256 уровней. Чем выше уровень квантования , или, что то же самое, чем больше битов отводится для записи измеренного значения, тем точнее передается это значение.

Примечание. Следует отметить, что измерительный инструмент тоже должен поддерживать выбранный уровень квантования (длину, измеренную линейкой с дециметровыми делениями, нет смысла представлять с точностью до миллиметра).

Ответ: чем выше уровень квантования тем точнее передается звук.

Литература:

[ 1] Информатика. Задачник-практикум в 2 т. /Под ред. , : Том 1. – Лаборатория Базовых Знаний, 1999 г. – 304 с.: ил.

Практикум по информатике и информационным технологиям . Учебное пособие для общеобразовательных учреждений / , . – М.: Бином. Лаборатория Знаний, 20с.: ил.

Информатика в школе: Приложение к журналу «Информатика и образование». №4 - 2003. - М.: Образование и Информатика, 2003. - 96 с.: ил.

И др. Информационная культура: одирование информации. Информационные модели. 9-10 класс: Учебник для общеобразовательных учебных заведений. - 2-е изд. - М.: Дрофа, 1996. - 208 с.: ил.

Сенокосов по информатике для школьников. - Екатеринбург: «У-Фактория», 2003. - 346. с54-56.

Человеческое ухо воспринимает звук с частотой от 20 колебаний в секунду (низкий звук) до 20 000 колебаний в секунду (высокий звук).

Человек может воспринимать звук в огромном диапазоне интенсивностей, в котором максимальная интенсивность больше минимальной в 10 14 раз (в сто тысяч миллиардов раз). Для измерения громкости звука применяется специальная единица "децибел" (дбл) (табл. 5.1). Уменьшение или увеличение громкости звука на 10 дбл соответствует уменьшению или увеличению интенсивности звука в 10 раз.

Временная дискретизация звука. Для того чтобы компьютер мог обрабатывать звук, непрерывный звуковой сигнал должен быть преобразован в цифровую дискретную форму с помощью временной дискретизации. Непрерывная звуковая волна разбивается на отдельные маленькие временные участки, для каждого такого участка устанавливается определенная величина интенсивности звука.

Таким образом, непрерывная зависимость громкости звука от времени A(t) заменяется на дискретную последовательность уровней громкости. На графике это выглядит как замена гладкой кривой на последовательность "ступенек" (рис. 1.2).


Рис. 1.2. Временная дискретизация звука

Частота дискретизации. Для записи аналогового звука и г го преобразования в цифровую форму используется микрофон, подключенный к звуковой плате. Качество полученного цифрового звука зависит от количества измерений уровня громкости звука в единицу времени, т. е. частоты дискретизации . Чем большее количество измерений производится за I секунду (чем больше частота дискретизации), тем точнее "лесенка" цифрового звукового сигнала повторяет кривую диалогового сигнала.

Частота дискретизации звука - это количество измерений громкости звука за одну секунду.

Частота дискретизации звука может лежать в диапазоне от 8000 до 48 000 измерений громкости звука за одну секунду.

Глубина кодирования звука. Каждой "ступеньке" присваивается определенное значение уровня громкости звука. Уровни громкости звука можно рассматривать как набор возможных состояний N, для кодирования которых необходимо определенное количество информации I, которое называется глубиной кодирования звука.

Глубина кодирования звука - это количество информации, которое необходимо для кодирования дискретных уровней громкости цифрового звука.

Если известна глубина кодирования, то количество уровней громкости цифрового звука можно рассчитать по формуле N = 2 I . Пусть глубина кодирования звука составляет 16 битов, тогда количество уровней громкости звука равно:

N = 2 I = 2 16 = 65 536.

В процессе кодирования каждому уровню громкости звука присваивается свой 16-битовый двоичный код, наименьшему уровню звука будет соответствовать код 0000000000000000, а наибольшему - 1111111111111111.

Качество оцифрованного звука. Чем больше частота и глубина дискретизации звука, тем более качественным будет звучание оцифрованного звука. Самое низкое качество оцифрованного звука, соответствующее качеству телефонной связи, получается при частоте дискретизации 8000 раз в секунду, глубине дискретизации 8 битов и записи одной звуковой дорожки (режим "моно"). Самое высокое качество оцифрованного звука, соответствующее качеству аудио-CD, достигается при частоте дискретизации 48 000 раз в секунду, глубине дискретизации 16 битов и записи двух звуковых дорожек (режим "стерео").

Необходимо помнить, что чем выше качество цифрового звука, тем больше информационный объем звукового файла. Можно оценить информационный объем цифрового стереозвукового файла длительностью звучания 1 секунда при среднем качестве звука (16 битов, 24 000 измерений в секунду). Для этого глубину кодирования необходимо умножить на количество измерений в 1 секунду й умножить на 2 (стереозвук):

16 бит × 24 000 × 2 = 768 000 бит = 96 000 байт = 93,75 Кбайт.

Звуковые редакторы. Звуковые редакторы позволяют не только записывать и воспроизводить звук, но и редактировать его. Оцифрованный звук представляется в звуковых редакторах в наглядной форме, поэтому операции копирования, перемещения и удаления частей звуковой дорожки можно легко осуществлять с помощью мыши. Кроме того, можно накладывать звуковые дорожки друг на друга (микшировать звуки) и применять различные акустические эффекты (эхо, воспроизведение в обратном направлении и др.).

Звуковые редакторы позволяют изменять качество цифрового звука и объем звукового файла путем изменения частоты дискретизации и глубины кодирования. Оцифрованный звук можно сохранять без сжатия в звуковых файлах в универсальном формате WAV или в формате со сжатием МР3 .

При сохранении звука в форматах со сжатием отбрасываются "избыточные" для человеческого восприятия звуковые частоты с малой интенсивностью, совпадающие по времени со звуковыми частотами с большой интенсивностью. Применение такого формата позволяет сжимать звуковые файлы в десятки раз, однако приводит к необратимой потере информации (файлы не могут быть восстановлены в первоначальном виде).

Контрольные вопросы

1. Как частота дискретизации и глубина кодирования влияют на качество цифрового звука?

Задания для самостоятельного выполнения

1.22. Задание с выборочным ответом. Звуковая плата производит двоичное кодирование аналогового звукового сигнала. Какое количество информации необходимо для кодирования каждого из 65 536 возможных уровней интенсивности сигнала?
1) 16 битов; 2) 256 битов; 3) 1 бит; 4) 8 битов.

1.23. Задание с развернутым ответом. Оценить информационный объем цифровых звуковых файлов длительностью 10 секунд при глубине кодирования и частоте дискретизации звукового сигнала, обеспечивающих минимальное и максимальное качество звука:
а) моно, 8 битов, 8000 измерений в секунду;
б) стерео, 16 битов, 48 000 измерений в секунду.

1.24. Задание с развернутым ответом. Определить длительность звукового файла, который уместится на дискете 3,5" (учтите, что для хранения данных на такой дискете выделяется 2847 секторов объемом 512 байтов каждый):
а) при низком качестве звука: моно, 8 битов, 8000 измерений в секунду;
б) при высоком качестве звука: стерео, 16 битов, 48 000 измерений в секунду.

Мой дедушка слушал граммофон. Молодость отца прошла под музыку, доносившуюся из динамика катушечного магнитофона. На мою молодость пришелся расцвет и закат кассетных магнитофонов. Мой сын растет в эру цифрового звука. Чтобы не отставать от времени, и обеспечить сына хорошим «звуком», решил разобраться, от чего зависит качество воспроизведения цифрового аудио сигнала.

Пообщался с друзьями меломанами. Провел информационный поиск в Интернете. В итоге пришел к выводу, что качественного звучания в цифровую эру можно добиться, если правильно выбрать 7 основных элементов современных музыкальных центров:

  • формат, в котором записана музыка;
  • проигрыватель;
  • цифро-аналоговый преобразователь;
  • усилитель;
  • акустику;
  • кабели;
  • питание.

Поделюсь ниже своими наблюдениями и выводами по поводу достижения качественного звучания записей в цифровых форматах.

Лирическое отступление, экспертам можно не читать.

В двух словах объясню, откуда берется звук в цифровом формате. В процессе звукозаписи микрофон преобразует механические колебания (собственно звук) в аналоговый электрический сигнал. Аналоговый сигнал в самом общем случае похож на синусоиду, которая всем нам знакома со времен средней школы. В эру аналогового звука именно этот сигнал записывался на различные носители и затем воспроизводился.

С развитием микропроцессорной техники появилась возможность записывать и хранить аудиоинформацию в цифровых форматах. Получают эти форматы с помощью процесса аналого-цифрового преобразования (АЦП).

В ходе АЦП аналоговый сигнал (нашу синусоиду из средней школы) преобразуют в дискретный (проще говоря, разрезают на части). На следующем этапе дискретный сигнал квантуют, т.е. каждому получившемуся отрезку синусоиды сопоставляют цифровое значение. На третьем этапе квантованный сигнал оцифровывают, т.е. кодируют в виде последовательности 0 и 1. Применительно к цифровой звукозаписи оцифровке подвергаются сведения об амплитуде и частоте звука.

Для записи и хранения цифровой аудиоинформации применяют цифровые аудиоформаты. Под аудиоформатом понимают набор требований к представлению звуковых данных в цифровом виде.

При рассуждении о качестве звучания цифровые форматы делят на 3 категории:

  • Форматы без дополнительного сжатия (CDDA, DSD, WAV, AIFF и др.);
  • Форматы, сжатые без потери качества (FLAC, WavPack, ADX и др.);
  • Форматы, в которых применено сжатие с потерями (MP3, AAC, RealAudio и др.).

Звук высокого качества получается при воспроизведении музыки, сохраненной в форматах из первой и второй категорий. В форматах третьей категории, для уменьшения объема данных, намеренно исключают часть информации. Например, информацию о скрытых частотах.

Скрытыми называют частоты, лежащие за пределами диапазона восприятия среднестатистического человека: 20 Гц – 22 кГц. Для аудиофилов этот диапазон в силу индивидуальных психофизиологических особенностей бывает шире.

Для комплектации домашней аудиотеки следует выбирать записи, сохраненные в файлах с расширениями:

  • *.wav, *.dff, *.dsf, *.aif, *.aiff – это файлы со звуком без сжатия;
  • *.mp4, *.flac, *.ape, *.wma – это наиболее распространенные файлы со звуком, сжатым без потерь.

Из истории. Говорят, что самые первые опыты по сохранению звука проводили еще древние греки. Они пытались сохранить звук в амфорах. Выглядело это примерно так: в амфору произносили слова и быстро её закупоривали. Увы, не одной такой записи не дошло до наших дней.

Выбор проигрывателя нужно начинать с понимания, в каком виде будет формироваться домашняя аудиотека. Можно по старинке покупать компакт-диски или перейти к приобретению любимой музыки через Интернет. Последний вариант имеет два весомых преимущества. Он компактен и экологичен:

  • Не встает вопрос о месте в квартире для хранения компакт дисков.
  • Не нужно выбрасывать неисправные диски в мусор.

Определились, как покупать музыку? Отлично! Если будете покупать диски – Вам нужен проигрыватель компакт-дисков. Если предпочитаете покупки через Интернет – ищите проигрыватель на жестком диске или флешпамяти. Не определились? Отлично! Ищите универсальный проигрыватель. На таком можно и диски, и файлы, купленные через сеть, послушать.

Естественно, можно превратить в проигрыватель и персональный компьютер. Но этот вариант удобен тогда, когда компьютер действительно персональный. Перспектива конкуренции за место у клавиатуры и возможные конфликты существенно снизят удовольствие от прослушивания музыки в хорошем качестве.

При выборе проигрывателя особое внимание обратите на доступные разъемы. Чем больше вариантов разъемов, тем проще будет выбрать другие элементы музыкального центра.

Проигрыватель прочитал цифровую последовательность с компакт-диска или из файла. Теперь наступает самый математический момент воспроизведения цифрового звука. Цифровой сигнал преобразуется в аналоговый. Происходит эта матемагия в ЦАП, или цифро-аналоговом преобразователе.

ЦАП может быть встроен в проигрыватель или реализован в виде отдельного блока. Задаваясь целью получить звук высокого качества, нужно остановить свой выбор на втором варианте. Встроенный преобразователь обычно уступает отдельному по качеству. Внешний ЦАП имеет собственный блок питания, встроенный запитан от общего с проигрывателем источника. При использовании внешнего ЦАП на его работу почти не влияют помехи от проигрывателя и усилителя.

Внешний ЦАП по схемотехническим решениям реализуют в 4-х основных вариантах:

  • Широтно-импульсный модулятор;
  • Схема передискретизации;
  • Взвешивающего типа;
  • Лестничного типа, или цепная R-2R схема.

При таком богатстве выбора для достижения звучания высокого качества вариант R-2R оказывается безальтернативным. За счет специальной схемы, реализованной на прецизионных сопротивлениях, в ЦАП лестничного типа удается достичь очень высокой точности преобразования.

При выборе внешнего цифро-аналогового преобразователя следует обратить внимание на две основных характеристики:

  • Разрядность. Хорошо, если у выбранной модели она равна 24 битам.
  • Максимальная частота дискретизации. Очень хорошее значение 96 кГц, великолепное 192 кГц.

Для достижения качественного звучания вместе с акустической системой нужно покупать усилитель. По сути эти два элемента аудиоцентра работают как одно целое.

Немного теории. Усилитель это прибор, который предназначен для повышения мощности аналоговых сигналов звуковой частоты. Он позволяет согласовать сигнал, полученный с ЦАП, с возможностями акустики. По типу силовых элементов усилители мощности разделяют на ламповые и транзисторные. В каждой группе присутствуют приборы с обратной связью и без обратной связи. Введение обратной связи направлено на исправление искажений, которые вносит в усиливаемый сигнал сам усилитель. Однако при получении звука без искажений приходится смириться с потерей части динамического диапазона звука.

С точки зрения подбора тандема «акустика – усилитель» важна классификация последнего по типу характеристики силового элемента. Существуют усилители с триодной и пентодной характеристикой. Пентодные усилители бывают в ламповом и транзисторном исполнении. Они подходят для полочных или простых напольных акустических систем. Для чувствительной напольной акустики с диапазоном от 90 дБ лучше подбирать усилители с триодной характеристикой.

Еще до покупки нужно постараться добиться идеального баланса между возможностями усилителя и акустики. Лучше всего прямо в магазине попросить консультантов погонять выбранную акустическую систему совместно с разными усилителями. Выбрать нужно тот комплект, который больше понравился Вашему уху.

Что такое хорошая акустическая система – это самый запутанный вопрос. Выбор акустики зависит от индивидуальных особенностей слуха человека, параметров помещения, в котором будет размещена система, и финансовых возможностей. В этой системе с тремя переменными найти золотую середину очень непросто. Поэтому рассмотрим три принципиальных варианта решения задачи.

Решение первое. Бюджетное. Можно оснастить домашний аудиоцентр «полочными» акустическими системами. Эти небольшие по размеру системы можно разместить на книжной полке. Они удобны для маленького помещения. В силу малых размеров это еще и недорогой вариант. Существенный минус такого решения состоит в том, что «полочная» акустика не даст нормального звучания басов.

Решение второе. Роскошное. Если позволяют габариты помещения и финансовые возможности, то можно купить напольную акустику. Эта система, благодаря размерам, может содержать низкочастотный динамик большого диаметра. Значит, есть шансы насладиться хорошими басами.

Решение третье. «Золотой» компромисс. Это решение подойдет для больших и маленьких помещений и приемлемо по цене. Состоит оно в приобретении сабвуфера и сателлитов. Сабвуфер отвечает за качественное воспроизведение басов. На стеллитах идет воспроизведение высоких частот.

При выборе акустики не стоит следовать никаким советам. Нужно опираться только на свой собственный слух. Еще нужно быть готовым к тому, что звучание акустики в магазине и в вашей квартире будет различным.

Выбор соединительных проводников – это вопрос, который неизбежно придется решать для достижения качественного звука. О влиянии кабеля на звучание написано много статей. Единственное, в чем авторы достигли единства, это в требовании к длине кабеля. Чем короче, тем лучше – вот золотое правило выбора соединительных кабелей.

Немного теории. Кабели подразделяют на межблочные и акустические. Межблочные служат для соединения блоков аудиоцентра, например проигрывателя и ЦАП. Акустическими кабелями осуществляется подключение акустической системы к усилителю мощности.

По типу материала проводника кабели разделяют на OFC, OCC и композитные. OFC – это кабели из бескислородной меди, полученные методом протяжки. OCC – это кабели из монокристаллической меди, полученной напрямую из расплава. Композитные – это кабели, в которых проводник состоит из нескольких материалов.

Если вы задались целью создать идеальный аудиоцентр из блоков разных производителей, постарайтесь использовать минимальные по длине соединительные кабели. И будьте готовы экспериментировать для достижения идеального качества звучания.

Наконец наш домашний комплекс для качественного воспроизведения музыки в цифровом формате собран. Теперь остался сущий пустяк. Для хорошей аппаратуры нужно качественное электропитание. Если самые дорогие «брендовые» усилители, ЦАП, проигрыватели запитать от общей сети, то ни о каком качественном звуке речи быть не может. Загрязненное помехами напряжение убьет все усилия по подбору и покупке качественных блоков для аудиоцентра.

Организуйте питание каждого блока отдельным кабелем. Кабели нужно подключить непосредственно к распределительному щитку на вводе в жилище. Розетки для подключения должны обеспечивать высокую степень фиксации штепселя. Разумно использовать сетевой фильтр, он сделает питание, а, следовательно, и звучание более чистым.

Зависимость громкости, а также высоты тона звука от интенсивности и частоты звуковой волны

Герц (обозначается Гц или Hz) - единица измерения частоты периодических процессов (например колебаний).
1 Гц означает одно исполнение такого процесса за одну секунду: 1 Гц= 1/с.

Если мы имеем 10 Гц, то это означает, что мы имеем десять исполнений такого процесса за одну секунду.

Человеческое ухо может воспринимать звук с частотой от 20 колебаний в секунду (20 Герц, низкий звук) до 20 000 колебаний в секунду (20 КГц, высокий звук).

Кроме того, человек может воспринимать звук в обширном диапазоне интенсивностей, в котором максимальная интенсивность больше минимальной в 1014 раз (в сто тысяч миллиардов раз).

Для того, чтобы измерять громкость звука придумали и применяют специальную единицу "децибел " (дБ )

Уменьшение или увеличение громкости звука на 10 дБ соответствует уменьшению или увеличению интенсивности звука в 10 раз.

Громкость звука в децибелах

Для того чтобы компьютерные системы могли обрабатывать звук, непрерывный звуковой сигнал должен быть преобразован в цифровую, дискретную форму с помощью временной дискретизации.

Для этого, непрерывная звуковая волна разбивается на отдельные маленькие временные участки, для каждого такого участка устанавливается определенная величина интенсивности звука.

Таким образом, непрерывная зависимость громкости звука от времени A(t) заменяется на дискретную последовательность уровней громкости. На графике это выглядит как замена гладкой кривой на последовательность "ступенек".


Временная дискретизация звука

Для записи аналогового звука и его преобразования в цифровую форму используется микрофон, подключенный к звуковой плате.

Чем гуще на графике будут располагаться дискретные полоски, тем качественнее в итоге получится воссоздать первоначальный звук

Качество полученного цифрового звука зависит от количества измерений уровня громкости звука в единицу времени, т. е. частоты дискретизации.

Частота дискретизации звука - это количество измерений громкости звука за одну секунду.

Чем большее количество измерений производится за одну секунду (чем больше частота дискретизации), тем точнее "лесенка" цифрового звукового сигнала повторяет кривую аналогового сигнала.

Каждой "ступеньке" на графике присваивается определенное значение уровня громкости звука. Уровни громкости звука можно рассматривать как набор возможных состояний N (градаций), для кодирования которых необходимо определенное количество информации I , которое называется глубиной кодирования звука.

Глубина кодирования звука - это количество информации, которое необходимо для кодирования дискретных уровней громкости цифрового звука.

Если известна глубина кодирования, то количество уровней громкости цифрового звука можно рассчитывать по общей формуле N = 2 I .

Например, пусть глубина кодирования звука составляет 16 битов, в таком случае количество уровней громкости звука равно:

N = 2 I = 2 16 = 65 536.

В процессе кодирования каждому уровню громкости звука присваивается свой 16-битовый двоичный код, наименьшему уровню звука будет соответствовать код 0000000000000000, а наибольшему - 1111111111111111.

Качество оцифрованного звука

Итак, чем больше частота дискретизации и глубина кодирования звука, тем более качественным будет звучание оцифрованного звука и тем лучше можно приблизить оцифрованный звук к оригинальному звучанию.

Самое высокое качество оцифрованного звука, соответствующее качеству аудио-CD, достигается при частоте дискретизации 48 000 раз в секунду, глубине дискретизации 16 битов и записи двух звуковых дорожек (режим "стерео").

Необходимо помнить, что чем выше качество цифрового звука, тем больше информационный объем звукового файла .

Можно легко оценить информационный объем цифрового стереозвукового файла длительностью звучания 1 секунда при среднем качестве звука (16 битов, 24 000 измерений в секунду). Для этого глубину кодирования необходимо умножить на количество измерений в 1 секунду и умножить на 2 канала (стереозвук):

16 бит × 24 000 × 2 = 768 000 бит = 96 000 байт = 93,75 Кбайт.

Звуковые редакторы

Звуковые редакторы позволяют не только записывать и воспроизводить звук, но и редактировать его. Наиболее видными можно смело назвать, такие как Sony Sound Forge , Adobe Audition , GoldWave и другие.

Оцифрованный звук представляется в звуковых редакторах в наглядной визуальной форме, поэтому операции копирования, перемещения и удаления частей звуковой дорожки можно легко осуществлять с помощью компьютерной мыши.

Кроме того, можно накладывать, перехлёстывать звуковые дорожки друг на друга (микшировать звуки) и применять различные акустические эффекты (эхо, воспроизведение в обратном направлении и др.).

При сохранении звука в форматах со сжатием отбрасываются не слышимые и невоспринимаемые ("избыточные") для человеческого восприятия звуковые частоты с малой интенсивностью, совпадающие по времени со звуковыми частотами с большой интенсивностью. Применение такого формата позволяет сжимать звуковые файлы в десятки раз, однако приводит к необратимой потере информации (файлы не могут быть восстановлены в первоначальном, исходном виде).